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Von Mises [ 1 I was the first to give the yield criterion for an aniso- 
tropic material. Later. Hill [2 I considered a number of problems in the 
theory of anisotropic, perfectly plastic bodies. A further paper con- 
cerned with this subject is that by Hy [ 3 I. 

We discuss below the problem of the indentation of a rigid stamp 
an anisotropic plastic medium in the case of plane strain. We shall 
the yield criterion given in [ 4 1. 

Let US begin with the basic equations. The equilibrium equations 

The yield criterion is 

and the law of plastic flow is 

%c eu %v 
k (ax - ay) + k’T,, = k (av _ 0%) - k’r,. = 4k7,,, - 2k' (Or - %) 

where k’ = dk/de . Using the substitutions 

G,=a-kcos20, a,=a+kcos20, r,,=ksin20 

it is easy to show that Equations (1) and (2) are of the hyperbolic 
The equations of the characteristics are [4 I 
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dy ( > k’ cos 20 - 2k sin 20 f Jfk’z + 4k2 
zz = 1,2 k’ sin 20 + 2k cos 20 

along which we have the integrals 

(5) 

The equations for 
bolic type and their 

Fig,. 1. 

the strain-rate components (3) are of the hyper- 
characteristics are given by Equation (5). Along 

these characteristics we have the Geiringer re- 
lationships 

du-vda=Q, dv + uda = 0 (7) 

which express the absence of elongations along 
the characteristics, where a is the angle between 
the characteristics and the x-axis and is given 
by Equation (5). 

From the integrals given by Equation (6) one 
obtains the formulas which establish the pro- 
perties of the network of slip lines 

c1a - 011 = 522 - 021 

@ vhz) - @ PM = 0 P22) - a (W ( 8) 

Figure 1 shows the families of slip lines 5 and 7. 

As a consequence, we find that if a certain section of a slip line ( 
is a straight line, then 0, 8 and W are constant along it. If both 
families of slip lines are straight lines then the stresses are uni- 
formly distributed in this region. 

If a certain section of a slip line of the family 5 is a straight 
line, then all the corresponding sections of lines W, cut by the lines 
[. are straight. These properties are a consequence of the analog of the 
first theorem of Hencky for the form of anisotropy under consideration. 

Consider now the problem of the indentation of a stamp as formulated 
by Hill 12 1. We shall seek the solution for bodies having an arbitrary 
form of anisotropy and assume that the material is homogeneous. The solu- 
tion will be obtained as a combination of the uniform state-of-stress 
fields coupled with a centered fan of characteristics as shown in Fig. 2. 

Suppose that the normal and shear components of stress u,, and r,, are 
given on the contour. Noting that 
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G, = sx co9 cp + 6y sin2 cp + r,V sin 2q, 
1 

Tn = 7j- (6u - QX) sin 2rp + T,, cos 217 

and using Equation (4). we have 

G, = 0 - k cos 2 (6 + cp), r, = k sin 2 (9 + cp) (9) 

where 4 is the angle between the normal to the contour and the x-axis. 

Assuming absence of friction on the surface of contact and that the 
remaining surface is free of stress, we can use Equation (9) to determine 
the state of stress in the triangular regions ABC and BDE of Fig. 2. In 
the triangle ABC we have 8 = --17 /2. and the inclination of the slip lines 
ac is given by Equation (5). The triangle BDE will experience a simple 
compression parallel to the r-axis, and Equation (9) gives 8 = 0 and 
a = -k(8). The angles of the triangle can be determined from the equa- 
tions of the characteristics (5). The hydrostatic pressure u in the tri- 
angle ABC along the characteristic ac can easily be determined from Equa- 
tion (6) and is given by 

1f2x 

6- \ I/k’s+ 4kad0=--k(0) 

The stress components 
(4) and are given by 

in the triangle ABC can be found from Equation 

Q, = - k (0) + \ l/k’” + 4kZd0 + k (- l/‘gc) 
0 

‘/2x 

p=~21=-k(0)-k(--‘l&+ \ .I/kfZ+4k2p13 
0 

The latter formula determines the limiting pressure p of the piston 
on the surface of an anisotropic, perfectly plastic medium. It follows 
from the above formulas that the limit load depends on the form of the 
functions k(8) in the range -n/2 < 8 < 0. In the case of an isotropic 
material, the Prandtl formula is automatically satisfied. 

Consider now the distribution of the rates of displacement. The tri- 
angle ABC slides as a solid body along AC with a velocity V/sin al, 
where V is the rate at which the stamp is pressed in and al is the angle 
BAC. In the centered field BCD, the velocity is V/sin a1 along cd and zero 



1462 V. V. Dudukalenko 

in the perpendicular direct ion. The triangle BDE moves in the direction 

of the line de with a velocity V/sin aI. 

The distribution of stress and velocities to the left of the point A 

can be obtained in a similar way. Clearly, in the case of an isotropic 

material, the distribution of displacement velocities will be the same 

as in the Hill solution [ 2 I. 
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